
RainbowSystem

Andrea Latina

RainbowSystem ii

COLLABORATORS

TITLE :

RainbowSystem

ACTION NAME DATE SIGNATURE

WRITTEN BY Andrea Latina April 17, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

RainbowSystem iii

Contents

1 RainbowSystem 1

1.1 RainbowSystem.guide . 1

1.2 about . 2

1.3 introduction . 2

1.4 hardware . 3

1.5 install . 3

1.6 register . 4

1.7 greetings . 4

1.8 manager . 5

1.9 drivers . 6

1.10 developer . 7

1.11 important . 8

1.12 obtainscreen . 8

1.13 releasescreen . 9

1.14 aboutrainbow . 9

1.15 begindraw . 10

1.16 enddraw . 11

1.17 getrastport . 11

1.18 getscreen . 12

1.19 move_rgb . 12

1.20 draw_rgb . 12

1.21 drawline_rgb . 13

1.22 drawcircle_rgb . 14

1.23 drawellipse_rgb . 14

1.24 drawpolygon_rgb . 15

1.25 fillcircle_rgb . 16

1.26 fillellipse_rgb . 17

1.27 fillpolygon_rgb . 17

1.28 fillrectangle_rgb . 18

1.29 writepixel_rgb . 19

RainbowSystem iv

1.30 writepixelline_rgb . 19

1.31 writepixelarray_rgb . 20

1.32 example . 21

1.33 policies . 24

RainbowSystem 1 / 27

Chapter 1

RainbowSystem

1.1 RainbowSystem.guide

..::
RainbowSystem
::..

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
ENHANCED GRAPHIC SYSTEM FOR AMIGA OS
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-

Introduction...

What is RainbowSystem

System Requirements

About the Author

How to Install

Why Register?
The Rainbow programs...

The Rainbow Manager

The video Drivers
Developers only...

The Autodocs

RainbowSystem 2 / 27

Legal Policies
Other topics...

Greetings!

1.2 about

Andrea Latina, the author of RainbowSystem, can be contacted at the
following address:

Piazza Peyron 7
10143 Torino

ITALIA

or, at the following e-mail addresses:

FIDONET: 2:334/21.14
AMIGANET: 39:101/402.14
INTERNET: alatina@hotmail.com (<<< my new address!!)

1.3 introduction

"RainbowSystem" is a 24 bits (16 million of colours) ←↩
powerful graphic

functions library which adapts the video output to the graphic hardware where
it runs.

For example, an application which uses it, will be able to visualize its
graphics directly in 16 million colours on an Amiga with a graphic card
installed, or in 256 colours on an AGA Amiga, or in a gray scale on an ECS
Amiga, without any modify by the programmer or by the user.

So, using ’RainbowSystem’ is useful for the users and for the programmers: the
ones can use applications which better work on their hardware (remember that
’RainbowSystem’ doesn’t need a graphic card, but it uses it if present), the
others can (finally!) forget shared pens, colormap, palette, public screens,
etc. etc. and can create very powerful applications, running on every public
screen directly in 16 million colours without any trouble, having in service a
very simple and powerful instructions set.

Technically, ’RainbowSystem’ is made of three cooperating programs:

1)
RainbowManager
: the heart of the project; runs in background and has

essentially two charges:

a) It lets the user select which driver join to a public screen.

b) It automatically assign the appropriate video driver to every

RainbowSystem 3 / 27

application which uses the "rainbow.library".

2) "rainbow.library": the shared library that the applications must use.

3) the
Drivers
video: actually 6, they hold the code segments strictly tied

to the hardware:

a) amy_grey.driver output in gray scale

b) amy_color.driver colour output , it adapts to the number of
available pens

c) amy_color_256.driver optimized driver for 256 colours screens

d) cgfx_15_bit.driver output in 32768 colors

e) cgfx_16_bit.driver output in 65536 colors

f) cgfx_24_bit.driver output in 16 million colors

All the drivers use the system graphic library, but the d,e,f ones use also
the ’cybergraphics.library’, to keep compatibility with the most diffused
graphic cards.

1.4 hardware

Really RainbowSystem needs only few things:

- The Operating System 3.0 or above

- A 68020 (or higher) processor

1.5 install

There are two ways to install "RainbowSystem": you can click on the
"Install" icon to start the automatic sequence, or you proceed manually
following the next steps:

1) copy the ’rainbow.library’ library in your LIBS: drawer.

2) copy the "RainbowManager" icon (placed in the "Installation/WBStart_Icon"
drawer) in your SYS:WBStartup drawer, then insert in the "Default Tool:"
field of the copied icon the complete path of the "RainbowManager" program
(eg: "Work:Utilities/RainbowSystem/RainbowManager")

3) Make sure that you have a "Drivers/" directory in the same drawer where the
"RainbowManager" program is located.

RainbowSystem 4 / 27

SUGGESTION: If you want to put RainbowManager icon in your WBStartup, you
========== can also put the "rainbow.library" library in the same directory

of RainbowManager, instead of in LIBS:

1.6 register

The demo version of RainbowSystem only has two video drivers:

- amy_grey: 16 gray scale (minimum hardware: OCS)

- amy_color_demo: up to 27 dithered colors (suggested hardware: AGA)

To have the other previously described
drivers
, registering it’s enough!

The registration quote changes on which is your needed driver:

- 15 dollars for the drivers: amy_color (from 8 to 256 colors)
amy_color_256 (optimized for 256 colors)

- 20 dollars for the drivers: cgfx_15/16/24_bit (for graphic cards)

- 25 dollars for all the drivers, both "amy" and "cgfx".

(mailing charges are included)

You can register sending me the money with an international Postal Money
Order, or in a closed envelope, in any case specify the address where I will
have to send the floppy disk the drivers and your own personal key.

In Italy, registration quotes are: 20.000, 25.000, 30.000 Lire.

1.7 greetings

I grasp the opportunity to thank every people who, directly or undirectly,
helped me to keep this project to the end:

...THANKS TO:

- Alain Martini
- Alessandro Zummo
- Efrem Mirolo
- Roberto DeFilippi

Who have let me test RainbowSystem on their graphics cards and for the
various suggestions given to me...

RainbowSystem 5 / 27

- Paolo Serrao

For translating ALL THIS manual into English!!!

- Andreas R.Kleinert

For the C sources of a shared library...

- Matthias Meixner

For his gui-builder "GenGUI", which I have used for the RainbowManager...

- Vision Factory Development

For their ’cybergraphics.library’...

- Nico Francois & Magnus Holmgren

For having written the useful ’reqtools.library’...

- Stefan Stuntz

His docs have inspired me for the legal policies :))

1.8 manager

The program RainbowManager must be launched before every ←↩
program which uses

the RainbowSystem, so a good idea would be to put it in the WBStartup drawer
in your boot disk (See how to

Install
to what to do).

After having activated it, RainbowManager will open its preferences window if
you click on its icon. With this you can specify which driver you want to use
on a selected public screen.

Manually adding the name of the screen of which you want to specify the driver
to the public screen list is not necessary, because when an application (which
uses RainbowSystem) will open on a public screen not present in the list, it
will be automatically added and the default driver, amy_grey.driver (grey
scale), will be assigned to it.

To manually add a public screen names, you have to click on the "New" gadget,
then you must insert the screen name, paying attention to the upper and lower
case, because the RainbowManager is case sensitive.

RainbowSystem 6 / 27

1.9 drivers

Drivers are code segments which access directly to the ←↩
specific graphic

functions of the hardware concerning to them: drivers for standard Amiga use
graphics.library (amy_#?) and drivers for graphic cards use
cybergraphics.library (cgfx_#?).

Let’s see them in detail:

- amy_grey - Default used driver

- Visualizes graphic data in 16 gray scale

- Uses a dithering algorithm to enhance video
efficiency

- amy_color_demo - Visualizes the output in colour, adapting the
output to the number of pens available on the
used public screen (a minimum of 8 and a
maximum of 27 are required)

- Uses a dithering algorithm to enhance
chromatic efficiency

- amy_color (*) - Visualizes the output in colour, adapting the
output to the number of pens available on the
used public screen (a minimum of 8 and a
maximum of 256 are required)

- Uses a dithering algorithm to enhance
chromatic efficiency

- amy_color_256 (*) - Optimized Driver for 256 colors screens

- It doesn’t adapt to the available number of
pens

- Uses a dithering algorithm to enhance
chromatic efficiency

- cgfx_15_bit (*) - Driver for CyberGraphX 15 bit screens
(32768 colors)

- Uses a dithering algorithm to enhance
chromatic efficiency

- cgfx_16_bit (*) - Driver for CyberGraphX 16 bit screens
(65536 colors)

- Uses a dithering algorithm to enhance

RainbowSystem 7 / 27

chromatic efficiency

- cgfx_24_bit (*) - Driver for CyberGraphX 24 bit screens
(16 million of colors)

- It doesn’t use a dithering algorithm to
enhance chromatic efficiency because it is not
necessary :-))

(*) Only available for
registered
users.

1.10 developer

I.
Important

II. First of all, a good
example

III. Autodocs:

a. Locking a public screen:

ObtainScreen

ReleaseScreen
b. The only function that all developers must use :)

AboutRainbow
c. Initializing the graphics structures:

BeginDraw

EndDraw
d. Getting some informations about the ’object’:

GetRastPort

GetScreen
e. Drawing primitives:

1.
Move_RGB

2.
Draw_RGB

3.
DrawLine_RGB

4.
DrawCircle_RGB

RainbowSystem 8 / 27

5.
DrawEllipse_RGB

6.
DrawPolygon_RGB

7.
FillCircle_RGB

8.
FillEllipse_RGB

9.
FillPolygon_RGB

10.
FillRectangle_RGB

11.
WritePixel_RGB

12.
WritePixelLine_RGB

13.
WritePixelArray_RGB

1.11 important

If you want to develop using RainbowSystem, you must send
me

an email to
receive the include files (specifying what compiler do you use).

1.12 obtainscreen

SYNOPSIS

object=ObtainScreen(name, error_code)
a0 a1

APTR ObtainScreen(STRPTR, LONG *);

FUNCTION

Allocates an object and initializes the specified public screen.
This function invokes the help of

RainbowManager
to know what driver

must be used by the graphics functions in the desired screen.

INPUTS

name = name string for public screen or NULL for default public
screen. The string "Workbench" indicates the Workbench ←↩

screen

RainbowSystem 9 / 27

error_code = a pointer to a LONG variable which stores the possible error
code (see file RainbowSystem.h for details)

RESULT

object = APTR pointer to an ’object’ to use with other functions.

NOTES

When you have finished, before closing the "rainbow.library", you must
release this ’object’ (to unlock the screen) using

ReleaseScreen()

1.13 releasescreen

SYNOPSIS

ReleaseScreen(object)
a0

void ReleaseScreen(APTR);

FUNCTION

Releases the allocated resources and unlocks the public screen (previously ←↩
locked

with
ObtainScreen()
)

INPUTS

obj - pointer to an object returned by
ObtainScreen()

NOTES

Before using this function, remember to call
EndDraw()
which follows a

previous
BeginDraw()

1.14 aboutrainbow

SYNOPSIS

AboutRainbow(object)
a0

RainbowSystem 10 / 27

void AboutRainbow(APTR);

FUNCTION

Show the "About" of RainbowSystem on the public screen previously
locked with

ObtainScreen()
INPUTS

obj - pointer to an object returned by
ObtainScreen()

NOTES

You should use this function in all your RainbowSystem-dependent ←↩
applications.

1.15 begindraw

SYNOPSIS

success=BeginDraw(object, rastport)
a0 a1

BOOL BeginDraw(APTR, struct RastPort *);

FUNCTION

Initializes some internal variables and instructs the object about
what RastPort must be used

INPUTS

object - pointer to an object returned by
ObtainScreen()

rastport - pointer to a RastPort structure

RESULT

success = TRUE if successful operation
FALSE if run out of memory

NOTES

If you want to change the RastPort, before recall this function,
you must call

EndDraw()
SEE ALSO

RainbowSystem 11 / 27

EndDraw()

1.16 enddraw

SYNOPSIS

EndDraw(object)
a0

void EndDraw(APTR);

FUNCTION

Releases everything that was allocated by
BeginDraw()

INPUTS

object - pointer to an object returned by
ObtainScreen()
and

initialized by
BeginDraw()

SEE ALSO

BeginDraw()

1.17 getrastport

SYNOPSIS

rastport=GetRastPort(object)
a0

struct RastPort *GetRastPort(APTR);

FUNCTION

Get the pointer to the RastPort structure previously transfered to
BeginDraw()

INPUTS

object - pointer to an object returned by
ObtainScreen()
and
initialized by

BeginDraw()
RESULT

rastport = pointer to a RastPort structure

RainbowSystem 12 / 27

1.18 getscreen

SYNOPSIS

screen=GetScreen(object)
a0

struct Screen *GetScreen(APTR);

FUNCTION

Get the pointer to the Screen previously locked using
ObtainScreen()

INPUTS

object - pointer to an object returned by
ObtainScreen()

RESULT

screen = pointer to a Screen structure

1.19 move_rgb

SYNOPSIS

Move_RGB(obj, x, y)
a1 d0 d1

void Move_RGB(APTR, WORD, WORD);

FUNCTION
Moves graphics pen position to (x,y) relative to upper left (0,0)
of RastPort. This sets the starting point for subsequent

Draw_RGB()
calls.

INPUTS

obj - pointer to an object returned by
ObtainScreen()
and

initialized by
BeginDraw()

x,y - point in the RastPort

1.20 draw_rgb

RainbowSystem 13 / 27

SYNOPSIS

Draw_RGB(obj, x, y, r, g, b)
a1 d0 d1

void Draw_RGB(APTR, WORD, WORD, UBYTE, UBYTE, UBYTE);

FUNCTION

Draws a coloured line from the current pen position to (x,y).

INPUTS

obj - pointer to an object returned by
ObtainScreen()
and

initialized by
BeginDraw()

x,y - coordinates of where to end the line in the RastPort ←↩
.

r,g,b - the color of the line, with:

r = 8-bit red component (0..255)
g = 8-bit green component (0..255)
b = 8-bit blue component (0..255)

1.21 drawline_rgb

SYNOPSIS

DrawLine_RGB(obj, x0, y0, x1, y1, r, g, b)
A0 D0 D1 D2 D3 D4 D5 D6

void DrawLine_RGB(APTR, ULONG , ULONG, ULONG, ULONG, UBYTE, UBYTE, UBYTE) ←↩
;

INPUTS

obj - pointer to an object returned by
ObtainScreen()
and

initialized by
BeginDraw()

x0,y0 - coordinates of the initial point of the line

x1,y1 - coordinates of the final point of the line

r,g,b - the color of the line, with:

r = 8-bit red component (0..255)

RainbowSystem 14 / 27

g = 8-bit green component (0..255)
b = 8-bit blue component (0..255)

example: 0, 0, 0 for black,
255,255,255 for white,
255,255, 0 for yellow...

1.22 drawcircle_rgb

SYNOPSIS

DrawCircle_RGB(obj, x, y, radius, r, g, b)

void DrawCircle_RGB(APTR, WORD, WORD, WORD, LONG, LONG);

FUNCTION

Creates a circular outline within the rectangular region specified
by the parameters.

INPUTS

obj - pointer to an object returned by
ObtainScreen()
and

initialized by
BeginDraw()

x,y - the coordinates of the centerpoint

radius - the radius of the circle (must be > 0)

r,g,b - the color of the circle, with:

r = 8-bit red component (0..255)
g = 8-bit green component (0..255)
b = 8-bit blue component (0..255)

example: 0, 0, 0 for black,
255,255,255 for white,
255,255, 0 for yellow...

NOTES

This function is a macro which calls
DrawEllipse_RGB
(obj,x,y,radius,radius,r,g,b)

1.23 drawellipse_rgb

RainbowSystem 15 / 27

SYNOPSIS

DrawEllipse_RGB(obj, x, y, rx, ry, r, g, b)
a0 d0 d1 d2 d3 d4 d5 d6

void DrawEllipse_RGB(APTR, WORD, WORD, WORD, WORD, UBYTE, UBYTE, UBYTE);

FUNCTION

Creates an elliptical outline within the rectangular region specified
by the parameters.

INPUTS

obj - pointer to an object returned by
ObtainScreen()
and

initialized by
BeginDraw()

x,y - the coordinates of the centerpoint

rx - the horizontal radius of the ellipse (must be > 0)

ry - the vertical radius of the ellipse (must be > 0)

r,g,b - the color of the line, with:

r = 8-bit red component (0..255)
g = 8-bit green component (0..255)
b = 8-bit blue component (0..255)

example: 0, 0, 0 for black,
255,255,255 for white,
255,255, 0 for yellow...

1.24 drawpolygon_rgb

SYNOPSIS

DrawPolygon_RGB(obj, count, array, r, g, b)
A0 D0 A1 D1 D2 D3

void DrawPolygon_RGB(APTR, UWORD, WORD *, UBYTE, UBYTE, UBYTE);

FUNCTION

Starting with the first pair in the array, draw connected lines to
it and every successive pair.

RainbowSystem 16 / 27

INPUTS

obj - pointer to an object returned by
ObtainScreen()
and

initialized by
BeginDraw()

count - number of (x,y) pairs in the array

array - pointer to first (x,y) pair of an array containing
the coordinates of the vertex of the polygon

r,g,b - the color of the polygon, with:

r = 8-bit red component (0..255)
g = 8-bit green component (0..255)
b = 8-bit blue component (0..255)

example: 0, 0, 0 for black,
255,255,255 for white,
255,255, 0 for yellow...

1.25 fillcircle_rgb

SYNOPSIS

FillCircle_RGB(obj, x, y, radius, rgb0, rgb1);

void FillCircle_RGB(APTR, WORD, WORD, WORD, LONG, LONG);

INPUTS

obj - pointer to an object returned by
ObtainScreen()
and

initialized by
BeginDraw()

x,y - the coordinates of the centerpoint

radius - the radius of the circle (must be > 0)

rgb0 - the color of the circle (a longword in the format: 0xRRGGBB).

To calculate this value you can use the macro ’RGB(r,g,b)’
(defined in ’RainbowSystem.h’) where:

r = 8-bit red component of the color (0..255)
g = 8-bit green component (0..255)
b = 8-bit blue component (0..255)

or a predefined color (see Colors.h)

RainbowSystem 17 / 27

rgb1 - the outline color (in the same format of rgb0), or ’RGB_NONE’
for no outline.

NOTES

This function is a macro which calls
FillEllipse_RGB
(obj,x,y,radius,radius,rgb0,rgb1)

1.26 fillellipse_rgb

SYNOPSIS

FillEllipse_RGB(obj, x, y, rx, ry, rgb0, rgb1);
a0 d0 d1 d2 d3 d4 d5

void FillEllipse_RGB(APTR, WORD, WORD, WORD, WORD, LONG, LONG);

INPUTS

obj - pointer to an object returned by
ObtainScreen()
and

initialized by
BeginDraw()

x,y - the coordinates of the centerpoint

rx - the horizontal radius of the ellipse (must be > 0)

ry - the vertical radius of the ellipse (must be > 0)

rgb0 - the color of the ellipse (a longword in the format: 0xRRGGBB).

To calculate this value you can use the macro ’RGB(r,g,b)’
(defined in ’RainbowSystem.h’) where:

r = 8-bit red component of the color (0..255)
g = 8-bit green component (0..255)
b = 8-bit blue component (0..255)

or a predefined color (see Colors.h)

rgb1 - the outline color (in the same format of rgb0), or ’RGB_NONE’
for no outline.

1.27 fillpolygon_rgb

SYNOPSIS

RainbowSystem 18 / 27

FillPolygon_RGB(obj, count, array, rgb0, rgb1)
a0 d0 a1 d1, d2

void FillPolygon_RGB(APTR, UWORD, WORD * , LONG, LONG);

INPUTS

obj - pointer to an object returned by
ObtainScreen()
and

initialized by
BeginDraw()

count - number of (x,y) pairs in the array

array - pointer to first (x,y) pair of an array containing
the coordinates of the vertex of the polygon

rgb0 - the color of the polygon (a longword in the format: 0xRRGGBB).

To calculate this value you can use the macro ’RGB(r,g,b)’
(defined in ’RainbowSystem.h’) where:

r = 8-bit red component of the color (0..255)
g = 8-bit green component (0..255)
b = 8-bit blue component (0..255)

or a predefined color (see Colors.h)

rgb1 - the outline color (in the same format of rgb0), or ’RGB_NONE’
for no outline.

1.28 fillrectangle_rgb

SYNOPSIS

FillRectangle_RGB(obj, x, y, width, height, rgb0, rgb1)
a0 d0 d1 d2 d3 d4 d5

void FillRectangle_RGB(APTR, ULONG, ULONG, ULONG, ULONG, LONG , LONG);

INPUTS

obj - pointer to an object returned by
ObtainScreen()
and

initialized by
BeginDraw()

x,y - the coordinates of the upper left corner of the ←↩
rectangle.

width,height - size of the rectangle

rgb0 - the color of the rectangle (a longword in the format: 0xRRGGBB).

RainbowSystem 19 / 27

To calculate this value you can use the macro ’RGB(r,g,b)’
(defined in ’RainbowSystem.h’) where:

r = 8-bit red component of the color (0..255)
g = 8-bit green component (0..255)
b = 8-bit blue component (0..255)

or a predefined color (see Colors.h)

rgb1 - the outline color (in the same format of rgb0), or ’RGB_NONE’
for no outline.

1.29 writepixel_rgb

SYNOPSIS

result=WritePixel_RGB(oby, x, y, r, g, b)
a0 d0 d1 d2 d3 d4

LONG WritePixel_RGB(APTR, LONG, LONG, UBYTE, UBYTE, UBYTE);

INPUTS

obj - pointer to an object returned by
ObtainScreen()
and

initialized by
BeginDraw()

x,y - the coordinates of the pixel

r,g,b - the color of the pixel, with:

r = 8-bit red component of the pixel (0..255)
g = 8-bit green component (0..255)
b = 8-bit blue component (0..255)

example: 0, 0, 0 for black,
255,255,255 for white,
255,255, 0 for yellow...

RESULT

result = 0 if pixel succesfully changed
= -1 if (x,y) is outside the RastPort

1.30 writepixelline_rgb

SYNOPSIS

RainbowSystem 20 / 27

result=WritePixelLine_RGB(obj, xstart, ystart, width, array)
a0 d0 d1 d2 a1

LONG WritePixelLine_RGB(APTR , ULONG , ULONG , ULONG , UBYTE *);

INPUTS

obj - pointer to an object returned by
ObtainScreen()
and

initialized by
BeginDraw()

x,y - the coordinates of a point

width - count of horizontal pixels to write (must be <= 4096 pixels)

array - pointer to an array of RRGGBB triplets (3 bytes per pixel):

RR, GG, BB, RR, GG, BB, RR, GG, BB,
first pixel, second pixel, third pixel, etc. etc.

where:

RR = 8-bit red component of the pixel (0..255)
GG = 8-bit green component (0..255)
BB = 8-bit blue component (0..255)

RESULT

result = the number of pixels plotted

NOTES

’Array’ should point to at least width*3 UBYTEs (in any case must be ←↩
greater

than 16 UBYTEs).

Just another (little) note: this function destroys the content of ’array’ ←↩
:-)

1.31 writepixelarray_rgb

SYNOPSIS

result=WritePixelArray_RGB(obj, xstart, ystart, width, height array)
a0 d0 d1 d2 d3 a1

LONG WritePixelArray_RGB(APTR , ULONG , ULONG , ULONG , ULONG, UBYTE *);

INPUTS

RainbowSystem 21 / 27

obj - pointer to an object returned by
ObtainScreen()
and

initialized by
BeginDraw()

x,y - the coordinates of starting point

width,height - size of the rectangle that should be transfered
(’width’ must be <= 4096 pixels)

array - pointer to an array of RRGGBB triplets (3 bytes per pixel) from
which to fetch the pixel data. Something like:

line_0: RR, GG, BB, RR, GG, BB, RR, GG, BB,
first pixel, second pixel, third pixel, etc. etc.

line_1: RR, GG, BB, RR, GG, BB, RR, GG, BB,
. first pixel, second pixel, third pixel, etc. etc.
.

etc. etc.

where:

line_0 = array
line_1 = array + width*3
.
.

line_n = array + n*width*3

(’3’ is simply the number of RGB components).

and:

RR = 8-bit red component of the pixel (0..255)
GG = 8-bit green component (0..255)
BB = 8-bit blue component (0..255)

RESULT

result = the number of pixels plotted

NOTES

’Array’ should point to at least width*height*3 UBYTEs (in any case must ←↩
be

greater than 16 UBYTEs).

Just another (little) note: this function destroys the content of ’array’ ←↩
:-)

1.32 example

RainbowSystem 22 / 27

#include <exec/types.h>
#include <exec/memory.h>
#include <intuition/intuition.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>

#include <proto/dos.h>
#include <proto/exec.h>
#include <proto/graphics.h>
#include <proto/intuition.h>

#include <RainbowSystem.h>

struct RainbowSystemBase *RainbowSystemBase;

int main(void)
{

APTR obj;
LONG error_code;

if (RainbowSystemBase=(struct RainbowSystemBase *)OpenLibrary("rainbow.library ←↩
",1L)) {

if (obj=
ObtainScreen
(NULL,&error_code)) {

const int width=256,height=256;
struct Window *wnd;

if (wnd=OpenWindowTags(NULL,WA_Left, 16,
WA_Top, 16,
WA_Title, "Demo",
WA_InnerWidth, width,
WA_InnerHeight, height,
WA_CustomScreen,

GetScreen
(obj),

WA_IDCMP, IDCMP_CLOSEWINDOW,
WA_Flags, WFLG_CLOSEGADGET| ←↩

WFLG_DRAGBAR|WFLG_DEPTHGADGET| ←↩
WFLG_SMART_REFRESH,TAG_DONE)) {

/*
** Communicate the dest RastPort to obj

*/

if (
BeginDraw
(obj,wnd->RPort)) {

const int offx=wnd->BorderLeft,
offy=wnd->BorderTop;

int i;

RainbowSystem 23 / 27

/*
** Clear Window

*/

FillRectangle_RGB
(obj,offx,offy,width,height,RGB_BLACK,RGB_NONE);

/*
** Draw 50 random lines

*/

for (i=0;i<50;i++)
{

UWORD x0=offx+rand()%width, // 0 .. width
y0=offy+rand()%height, // 0 .. height
x1=offx+rand()%width,
y1=offy+rand()%height;

UBYTE r=rand()&0xFF, // 0 .. 255
g=rand()&0xFF,
b=rand()&0xFF;

DrawLine_RGB
(obj,x0,y0,x1,y1,r,g,b);

}

/*
** Wait 3 secs and clear the window

*/

Delay(150);

FillRectangle_RGB
(obj,offx,offy,width,height,RGB_BLACK,RGB_NONE);

/*
** Draw a red circle

*/

DrawCircle_RGB
(obj,width/2,height/2,width/2,0xFF,0,0);

Delay(150);

FillRectangle_RGB
(obj,offx,offy,width,height,RGB_BLACK,RGB_NONE);

/*
** Draw a filled blue circle, with a red outline

*/

RainbowSystem 24 / 27

FillCircle_RGB
(obj,width/2,height/2,width/2,RGB_BLUE,RGB_RED);

Delay(150);

FillRectangle_RGB
(obj,offx,offy,width,height,RGB_BLACK,RGB_NONE);

/*
** Draw 40 random triangles (without outline)

*/

for (i=0;i<40;i++)
{

UBYTE r=rand()&0xFF,
g=rand()&0xFF,
b=rand()&0xFF;

WORD array[6];

array[0]=offx+rand()%width; array[1]=offy+rand()%height;
array[2]=offx+rand()%width; array[3]=offy+rand()%height;
array[4]=offx+rand()%width; array[5]=offy+rand()%height;

FillPolygon_RGB
(obj,3,array,RGB(r,g,b),RGB_NONE);

}

/*
** Stop drawing!

*/

EndDraw
(obj);

WaitPort(wnd->UserPort);
}

CloseWindow(wnd);
}

ReleaseScreen
(obj);

} else printf("Error code: %d\n",error_code);

CloseLibrary((struct Library*)RainbowSystemBase);
}
return(0L);

}

1.33 policies

RainbowSystem 25 / 27

--
Using RainbowSystem in your own applications

--

The following text describes the rules and caveats if you want to use the
RainbowSystem in one of your applications. Please read the complete document,
following the rules are some paragraphs that try to give reasons why things are
handled this way.

Since the rules are different for freely distributable and commercial
applications, some definitions follow before we get started:

In this document, the term "freely distributable" refers to software which is
either really for free (costs nothing) or which lets the user decide if he wants
to pay. Some restrictions for not paying users (better: enhancements for paying
users) are acceptable, but the software has to work even without paying. Freely
distributable software is one of public domain (not copyrighted), freeware
(copyrighted but for free) or shareware (copyrighted and requesting a rather low
fee).

Every program that doesn’t fit into the freely distributable group is considered
commercial. If you are unsure about the type of your application, just ask.

--
Freely Distributable Software

--

Freely distributable software may use RainbowSystem for free, no special license
agreements are needed. However, redistributing parts of RainbowSystem
(libraries, drivers, preferences) together with your application is neither
allowed nor necessary. Users of freely distributable applications are usually
enough experienced to look out for the complete RainbowSystem package
themselves. Not redistributing RainbowSystem helps eliminating network traffic
and keeps down archive size. If you really feel that your application absolutely
needs a RainbowSystem coming with it, just contact me. I am sure we will find a
solution.

The copyright information contained in all programs using RainbowSystem and the
accompanying documentation should state that this program uses RainbowSystem and
that RainbowSystem was written by Andrea Latina.

Freely distributable software should also contain some basic information about
RainbowSystem to help unexperienced users to find it and to make some little
advertisement for my system. You can either directly use the supplied
"RainbowSystem.redme" for this purpose or say something similiar with your own
words. If you really dislike the advertisement, I won’t mind if you remove the
registration part from the readme file. But hey... you got this fantastic
RainbowSystem for free so why not help me making some money? :-)

--
Commercial Software

--

RainbowSystem within commercial software is not for free. Your company will have

RainbowSystem 26 / 27

to pay a licensing fee somewhere between US$ 50.- for very small and US$ 500.for
very big applications. Usually, the price is calculated by multiplying the
suggested retail price of your product with a factor of five, but this is only
some kind of very rough example. Rather expensive applications with probably
very few customers (e.g. "special purpose" software) will of course get other
conditions. Also, if you plan to use RainbowSystem for more applications, multi
application licenses are available. Just contact me and ask.

The license agreement will allow you to use the current and all following
versions of RainbowSystem with the current and all following versions of your
product. You will also get the rights to reproduce and redistribute some of the
files from the RainbowSystem distribution, including the Rainbowsystem library,
the drivers and the RainbowManager program. Special commercial versions of this
preferences program without shareware reminders are available on demand.

The copyright information contained in all programs using RainbowSystem and the
accompanying documentation should state that this program uses RainbowSystem and
that RainbowSystem is copyrighted by and reproduced under license from Andrea
Latina.

--
Discussion

--

First of all, these policies are not some kind of quick hack. I considered lots
of other possibilities and it took quite a long time for me to decide. Please
read the following paragraphs carefully, I hope you will understand my reasons.

RainbowSystem shall be used in all kinds of applications, regardless whether
they are distributed as Public Domain, Freeware, Giftware, Shareware, Commercial
Ware or whatever else.

First of all, if something wants to become a standard on the Amiga, the public
domain and freeware scene is the most important thing to consider. There is a
really huge number of programmers that work just for fun, supplying all the
little (and sometimes big) tools that make our lifes easier. These people do a
really great job and surely will help keeping the Amiga alive for a long long
time.

Of course I could have released RainbowSystem as a completely commercial
product, sold for a somewhat high price. Some companies might have bought it to
create some of their applications, but only very few public domain or shareware
programmers would have been willing to pay such a considerable amount of money.
And even if some of them would, RainbowSystem would never have the chance to
become a real standard. Besides this fact, I don’t think that it’s a good idea
to take money from people who spend their spare time in writing public domain
applications. If an application is for free, the use of RainbowSystem has to be
free too.

Since charging programmers is not what I wanted to do, the only way for me to
get some money out of RainbowSystem is to have the users of applications pay for
it. Well, in fact they are the ones who benefit from flexible and configurable
programs, charging them seems quite reasonable. Luckily, there are a lot more
users than programmers. This results in a very low price which seems to be even
more cheap if you consider that a single registration allows configuration of
all currently existing and all future RainbowSystem applications.

RainbowSystem 27 / 27

Furthermore, I do not force people to register. Most other shareware products
allow some period of evaluation time after that one either has to register or to
delete the program. This is not true for RainbowSystem. Registration is only
necessary when some advanced configuration options are wanted.

Distribution policies for commercial applications are kind of different. If I
see someone making real money with the aid of my work, it should be easily
understandable that I also want to get a little piece of that cake. That’s why
the use of RainbowSystem is not for free in commercial programs.

My first ideas were to have some kind of percentage fee per sold application but
this would become uncontrollable and too complicated to handle quite soon. So I
decided to have a fixed license fee which’s amount depends on the size of the
product. Thus, small and relatively cheap programs with probably not too much
financial profit will be able to get a cheap RainbowSystem license whereas big
products will have to pay a bit more.

I understand that it’s nearly impossible to sell a commercial product together
with a RainbowSystem preferences program with some disabled options and
shareware reminders. Therefore, commercial licensees may get a special stripped
version of this tool which only contains the possible settings of an
unregistered RainbowSystem but doesn’t contain any reminders or other stuff
unsuitable for commercial applications. I am also thinking of a system that
allows commercial programs to come with full featured preferences, restricted
only to the specific application.

I really hope that these policies will satisfy the requirements of both,
freeware authors and commercial companies and of course also of application
users. Currently, this seems to work quite well. Anyway, if you have some other
ideas or suggestions how things could be handled better, feel free to tell me
about them. I am always looking for new ideas. But please keep in mind my main
destinations mentioned above since I won’t give up any of them.

Andrea Latina

	RainbowSystem
	RainbowSystem.guide
	about
	introduction
	hardware
	install
	register
	greetings
	manager
	drivers
	developer
	important
	obtainscreen
	releasescreen
	aboutrainbow
	begindraw
	enddraw
	getrastport
	getscreen
	move_rgb
	draw_rgb
	drawline_rgb
	drawcircle_rgb
	drawellipse_rgb
	drawpolygon_rgb
	fillcircle_rgb
	fillellipse_rgb
	fillpolygon_rgb
	fillrectangle_rgb
	writepixel_rgb
	writepixelline_rgb
	writepixelarray_rgb
	example
	policies

